December 27th, 2015

Robots: Construction Drilling

In this episode Audrow Nash interviews Konrad Fagertun, Chief Operating Officer of nLink in Norway. They speak about a mobile robotic platform for the construction industry. The problem that they’ve chosen to solve is drilling holes in the ceiling. For a shopping mall, 400,000 holes may have to be drilled — by hand. This is a task Fagertun says “no one likes” so nLink built a robot to automate it. Fagertun discusses their robotic platform, how they chose their application, and the future plans of nLink.



Konrad Fagertun

KonradKonrad has been involved with technology startups since 2006 and holds a masters degree from NTNU School of Entrepreneurship (and Boston University), with a cybernetics technology background. As one of the founders, and Chief Operating Officer, he focuses on business development, partner relations and sales in nLink’s quest to revolutionize the construction industry.

 
 


Links:

| More

Related episodes:

December 11th, 2015

Robots: Multi-Agent Systems and Human-Swarm Interaction

In this episode, Andrew Vaziri interviews Magnus Egerstedt, Professor at Georiga Tech, about his research in swarm robotics and multi-agent systems. They discuss privacy and security concerns, as well as research into interfaces designed to enable a single operator to control large swarms of robots.

The video below shows some of the strategies used by Magnus’ lab.

Magnus Egerstedt

magnus_headshot

Magnus Egerstedt is Schlumberger Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology, where he serves as Associate Chair for Research. He received an MSc in Engineering Physics and a PhD in Applied Mathematics from the Royal Institute of Technology, Stockholm, Sweden, and a BSc in Philosophy from Stockholm University. He was then a Postdoctoral Scholar at Harvard University. Dr. Egerstedt is the director of the Georgia Robotics and Intelligent Systems Laboratory (GRITS Lab), a Fellow of the IEEE, and a recipient of a number of research and teaching awards, including the Ragazzini Award from A2C2.

 
Links:

| More

Related episodes:

November 28th, 2015

Robots: Marine Robotics Systems - Transcript

Multi Session SLAM Sirus AUV Plateform In this episode, Ron Vanderkley speaks with Stefan Williams of the University of Sydney’s Australian Centre for Field Robotics, Marine Systems Group. They discuss the future of Autonomous Underwater Vehicles (AUVs), and a recent expedition where they used multi-session SLAM to map the famous Antikythera Shipwreck (circa 60-80 B.C.), one of the richest ancient wrecks ever discovered. It is located under 55m of water on the NE coast of the island of Antikythera. The site is famous for the first Analog Computer known as the Antikythera Mechanism, a geared device designed to calculate and display celestial information, including phases of the sun and a luni-solar calendar.

The ACFR leads Australia’s Integrated Marine Observing System (IMOS) AUV Facility. IMOS is a nationally coordinated program designed to establish and maintain the research infrastructure required to support Australia’s marine science research. The IMOS AUV facility generates physical and biological observations of benthic variables that cannot be cost-effectively obtained by other means.

Stefan Williams
Stefan Williams is a Professor at the University of Sydney’s School of Aerospace, Mechanical and Mechatronic Engineering. He is a member of the Australian Centre for Field Robotics where he leads the Marine Robotics group. He is also the head of Australia’s Integrated Marine Observing System AUV Facility. His research interests include Simultaneous Localisation and Mapping in unstructured underwater environments, autonomous navigation and control and classification and clustering of large volumes of data collected by robotic systems. He received his PhD from the University of Sydney in 2002 and completed a Bachelor of Applied Science with first class honours in 1997 at the University of Waterloo, Canada.

Links:

 

| More

Related episodes:

November 14th, 2015

Robots: ICRA 2015 Company Showcase - Transcript

In this episode, Audrow Nash interviews several companies from the International Conferences on Robotics and Automation (ICRA) showcase. The companies span the following applications: mobile robots for military and commercial uses, warehouse solutions, robotic arms and manipulators, and robotic systems to assist surgery.

Companies are listed in the order of their interview with a picture of their booth at ICRA 2015. All photos were taken by Robohub and can be found here.

 

American Robot Company (AMBOT) specializes in advanced electronics, unmanned systems, autonomous vehicle solutions and intelligent platforms for research, commercial and military robotic applications.

GRP 4400 wheeled platform - American Robot Company

 

Fetch Robotics provides warehouse solutions.

Fetch Robotics

 

Intuitive Surgical designs and builds the da Vinci Surgical System for robotically assisted minimally invasive surgery.

da Vinci Xi - Intuitive Surgical

 

Kinova designs and manufactures robotics platforms and components that are simple and safe under two business units: Assistive Robotics for  people with disabilities and Service Robotics for humans and robots working in the same environments.

Adept Mobile Robots

 

Applied Dexterity seeks to advance the field of robotically assisted surgery by creating a research surgical robot that can serve as a standard platform allowing researchers to share their software and improvements.

Raven II - Applied Dexterity inc.

 

Interviewees

Jens Hurley is a Senior Roboticist at the American Robot Company.

Michael Ferguson is a Co-Founder and the Chief Technical Officer (CTO) of Fetch Robotics. Previously, Ferguson was the founder and CTO of Vanadium lab, developing low-cost education and hobby robot controllers, and a Software Engineer at Willow Garage.

Simon DiMaio is a Senior Manager of Research and Advanced Systems Development at Intuitive Surgical. Previously, DiMaio was an Instructor of Radiology and Postdoctoral Research Fellow at Harvard Medical School.

François Boucher is the Vice President of Business Development at Kinova Inc. in Boisbriand, Canada. He received his MBA and a Bachelor degree in Physics Engineering from Laval University. After his graduation, he worked as the General Manager of a technology transfer and investment company before joining Kinova in its early days to develop the service robotics market. In 2014 and 2015, Kinova was listed as one of the 50 most influential public & private companies in the global robotics industry by the Robotics Business Review and one of the fastest-growing company by Profit 500 in Canada.

Andrew Lewis is a Roboticist at Applied Dexterity. Previously, Lewis was a mechanical engineering graduate student in the BioRobotics lab at the University of Washington. His work in the BioRobotics Lab focused on the development of surgical robots, dynamically evaluated gravity compensation, and electromyography controlled iRobot Roombas. Lewis earned his BS in Robotics Engineering from Worcester Polytechnic Institute in 2011. His interests include mechanical design, systems development, and ethics in robotics engineering.

 

Links:

| More

Related episodes:

October 31st, 2015

Robots: Embodied Quadrotors - Transcript

In this interview, Audrow Nash speaks with Dr. Davide Scaramuzza, Assistant Professor of Robotics at the University of Zurich and leader of the Robotics and Perception Group, about autonomous unmanned vehicles (UAV) that navigate using only on-board systems—no GPS or motion capture systems.

Below are some videos of Scaramuzza’s research.

 

Davide Scaramuzza

Davide_Scaramuzza_ID_photoDavide Scaramuzza (1980, Italian) is Assistant Professor of Robotics at the University of Zurich. He is founder and director of the Robotics and Perception Group, where he develops cutting-edge research on low-latency vision and visually-guided micro aerial vehicles. He received his PhD (2008) in Robotics and Computer Vision at ETH Zurich (with Roland Siegwart). He was Postdoc at both ETH Zurich and the University of Pennsylvania (with Vijay Kumar and Kostas Daniilidis). From 2009 to 2012, he led the European project “sFly”, which introduced the world’s first autonomous navigation of micro quadrotors in GPS-denied environments using vision as the main sensor modality. For his research contributions, he was awarded an ERC Starting Grant (2014), the IEEE Robotics and Automation Early Career Award (2014), a Google Research Award (2014). He coauthored the book “Introduction to Autonomous Mobile Robots” (MIT Press). He is author of the first open-source Omnidirectional Camera Calibration Toolbox for MATLAB, also used at NASA, Bosch, and Daimler. He is also author of the 1-point RANSAC algorithm, an effective and computationally efficient reduction of the standard 5-point RANSAC for visual odometry, when vehicle motion is non-holonomic. He is Associate Editor of the IEEE Transactions of Robotics and has numerous publications in top-ranked robotics and computer vision journals, such as PAMI, IJCV, T-RO, IJRR, JFR, AURO. His hobbies are piano and magic tricks.

Links:

| More

Related episodes: