Archive for the ‘Podcast’ Category

May 15th, 2015

Robots: Supernumerary Limbs - Transcript

In this episode, Audrow Nash interviews Federico Parietti, a PhD candidate at the Massachusetts Institute of Technology, about his research on supernumerary robotic limbs that can be used in manufacturing and for rehabilitative purposes, among other uses.

The videos below demonstrate how supernumerary limbs can be used to assist in tasks. This research was done in the same lab that Federico works in.

Federico Parietti

Federico Parietti is currently a PhD candidate at the Massachusetts Institute of Technology, where his research focuses on the design and control of wearable robots and man-machine interfaces. Previously, Parietti was a Research Associate and Visiting Scholar at Carnegie Mellon University and an International Student at ETH Zurich, in Switzerland.

 

 

 

Links:

| More

Related episodes:

May 1st, 2015

Robots: bStem - Transcript

In this episode, Audrow Nash interviews Todd Hylton, Senior Vice President at Brain Corporation, about neuromorphic computers. They discuss the robotics development board bStem, which approximates a neuromorphic computer, as well as the eyeRover: a small balancing robot that demonstrates how the bStem can be used in mobile robots.

Todd Hylton

As Senior Vice President of Brain Corporation, Dr. Todd Hylton leads the development of business and technical strategies within the company. A scientist and co founder of a small semi-conductor equipment manufacturer, Hylton brings 25 years of experience in the semiconductor, optical communications, data storage and defense industries alongside a broad technical entrepreneurial background in research and development, small business, marketing and government programs.

 

 

Links:

| More

Related episodes:

April 17th, 2015

Robots: Soft Robotics Toolkit - Transcript

In this podcast, Ron Vanderkley speaks to Donal Holland of Harvard University about his team’s work on the Soft Robotics Toolkit.

Soft Robotics is a class of elastically soft, versatile, and biologically inspired machines represents an exciting and highly interdisciplinary paradigm in engineering that could revolutionize the role of robotics in healthcare, field exploration, and cooperative human assistance.

The Soft Robotics Toolkit is a collection of shared resources to support the design, fabrication, modelling, characterization, and control of soft robotic devices. The toolkit was developed as part of educational research being undertaken in the Harvard Biodesign Lab. The ultimate aim of the toolkit is to advance the field of soft robotics by allowing designers and researchers to build upon each other’s work. The web site contains the open source fluidic control board, detailed design for wide range soft robotic components (including actuators and sensors).

The growing popularity of site is now bringing in hobbyist and makers alike. The Soft Robotics Toolkit team has announce two competitions intended to reward students, researchers, makers, and designers of all levels for their contributions to the field of soft robotics.

 

Donal Holland

donal_200x300

Donal Holland is a visiting Lecturer in Engineering Sciences at Harvard School of Engineering and Applied Sciences Demographic info Ireland | Mechanical or Industrial Engineering. He was a passed PhD Student at Trinity College Dublin, Visiting Fellow at Harvard School of Engineering and Applied Sciences, Research Assistant at Treocht Ltd.

 

 

Links:

 

| More

Related episodes:

August 8th, 2014

Robots: Stiquito

In this episode, Audrow Nash interviews James Conrad, professor at the University of North Carolina at Charlotte, about the history of the autonomous walking robot, Stiquito. Stiquito is a small, inexpensive hexapod (i.e., six-legged) robot that has been used since 1992 by universities, high schools, and hobbyists. It is propelled by nitinol, an alloy actuator wire that expands and contracts, and roughly emulates the operation of a muscle. Nitinol contracts when heated and returns to its original size and shape when cooled. The robot can be outfitted with several sensors for more advanced behavior, such as obstacle avoidance, line following, and light tracking.

Jonathan Mills of Indiana University, developed Stiquito as an inexpensive vehicle for research. The robot became popular after the publication of Stiquito: Advanced Experiments with a Simple and Inexpensive Robot in 1997, which included a kit to build a Stiquito robot. Since then, two additional books have been published, and Stiquito has been used to introduce students to the concepts of analog electronics, digital electronics, computer control, and robotics. It has also been used for advanced topics such as subsumption architectures, artificial intelligence, and advanced computer architecture.

The video below shows an explanation and demo of Stiquito. You can find more videos about Stiquito here.

James Conrad
JamesConrad_2013James M. Conrad is professor at the University of North Carolina at Charlotte. He has served as an assistant professor at the University of Arkansas and as an instructor at North Carolina State University. He has also worked at IBM, Ericsson/Sony Ericsson, and BPM Technology. He has been elected to serve on the IEEE Board of Directors as Region 3 director for 2016-2017. He is the author of numerous books, book chapters, journal articles, and conference papers in the areas of embedded systems, robotics, parallel processing, and engineering education.

Links:

| More

Related episodes:

April 4th, 2014

Robots: Termite-Inspired Construction

In this episode, we talk to Justin Werfel from the Wyss Institute for Biologically Inspired Engineering at Harvard University about their latest paper published in Science on “Designing Collective Behavior in a Termite-Inspired Robot Construction Team”. This work was done with Kirstin Petersen and Radhika Nagpal, director of the Self-Organizing Systems Research Group.

Termites provide a beautiful example of how simple agents, using only local information, can build complex structures such as termite mounds. Taking inspiration from these swarm systems in nature, Werfel and colleagues have created TERMES robots that build three-dimensional structures without the need for any leader or prescribed roles. Such systems are typically scalable (i.e. you can add as many robots as you’d like) and robust to the failure of individual robots, making them ideal candidates for high-risk missions in space or disaster scenarios. The beetle-looking robots are able to carry and deposit blocks and navigate a structure. The challenge is to determine the simple rules the robots need to follow and that will give rise to the desired structure. To decide what rule to apply at a given time, the robots simply observe their local environment, checking if there is a block or not in front of them, and determining if they should add one as a result. This form of communication through the environment is called stigmergy and is an important concept in swarm systems. In the future, the authors hope to use their expertise to learn more about how termites are able to build their mounds.

Justin Werfel
justinJustin Werfel is a research scientist at Harvard’s Wyss Institute for Biologically Inspired Engineering. His research interests are in the understanding and design of complex and emergent systems. He is currently working on the development of robotic systems motivated by biological collectives, such as ant colonies, termites, and cellular slime molds, with Wyss faculty including Radhika Nagpal and Rob Wood. He completed his Ph.D. at MIT in 2006, developing algorithms to allow swarms of simple robots to autonomously build user-specified structures. His postdoctoral research at Harvard included further exploration of collective construction, work on the evolution of cooperative and altruistic behaviors at the New England Complex Systems Institute, and cancer modeling at Harvard Medical School/Children’s Hospital Boston.

Links:

| More

Related episodes: